Database for the paper "Binary optimal linear codes with various hull dimensions"



Part 1   


Exhaustive search for k <= n <= 12 (when n=12, k <=4)


Notation:

di means highest minimum distance of an [n,k,d] code with hull dimension h=i (0 <= i <=5)


##################################

n,k 2 1

d0: 1

[2, 1, 1] Linear Code over GF(2)

Generator matrix:

[1 0]


d1: 2

[2, 1, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1]


d2: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d3: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d4: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d5: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d6: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 2 1

h0, h1, h2, h3, h4, h5, h6: 1 2 0 0 0 0 0



##################################

n,k 2 2

d0: 1

[2, 2, 1] Cyclic Linear Code over GF(2)


d1: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d2: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d3: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d4: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d5: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


d6: 0

[2, 0, 2] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 2 2

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 3 1

d0: 3

[3, 1, 3] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1]


d1: 2

[3, 1, 2] Linear Code over GF(2)

Generator matrix:

[1 1 0]


d2: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d3: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d4: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d5: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d6: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 3 1

h0, h1, h2, h3, h4, h5, h6: 3 2 0 0 0 0 0



##################################

n,k 3 2

d0: 2

[3, 2, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 1]

[0 1 1]


d1: 1

[3, 2, 1] Linear Code over GF(2)

Generator matrix:

[1 0 1]

[0 1 0]


d2: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d3: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d4: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d5: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d6: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 3 2

h0, h1, h2, h3, h4, h5, h6: 2 1 0 0 0 0 0



##################################

n,k 3 3

d0: 1

[3, 3, 1] Cyclic Linear Code over GF(2)


d1: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d2: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d3: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d4: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d5: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


d6: 0

[3, 0, 3] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 3 3

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 4 1

d0: 3

[4, 1, 3] Linear Code over GF(2)

Generator matrix:

[1 1 1 0]


d1: 4

[4, 1, 4] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1]


d2: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d3: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d4: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d5: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d6: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 4 1

h0, h1, h2, h3, h4, h5, h6: 3 4 0 0 0 0 0



##################################

n,k 4 2

d0: 2

[4, 2, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0]

[0 1 1 0]


d1: 1

[4, 2, 1] Linear Code over GF(2)

Generator matrix:

[1 0 1 0]

[0 1 0 0]


d2: 2

[4, 2, 2] Quasicyclic of degree 2 Linear Code over GF(2)

Generator matrix:

[1 0 0 1]

[0 1 1 0]


d3: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d4: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d5: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d6: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 4 2

h0, h1, h2, h3, h4, h5, h6: 2 1 2 0 0 0 0



##################################

n,k 4 3

d0: 1

[4, 3, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]


d1: 2

[4, 3, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 1]

[0 1 0 1]

[0 0 1 1]


d2: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d3: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d4: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d5: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d6: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 4 3

h0, h1, h2, h3, h4, h5, h6: 1 2 0 0 0 0 0



##################################

n,k 4 4

d0: 1

[4, 4, 1] Cyclic Linear Code over GF(2)


d1: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d2: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d3: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d4: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d5: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


d6: 0

[4, 0, 4] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 4 4

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 5 1

d0: 5

[5, 1, 5] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1]


d1: 4

[5, 1, 4] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 0]


d2: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d3: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d4: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d5: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d6: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 5 1

h0, h1, h2, h3, h4, h5, h6: 5 4 0 0 0 0 0



##################################

n,k 5 2

d0: 2

[5, 2, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0]

[0 1 1 0 0]


d1: 3

[5, 2, 3] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 1]

[0 1 1 1 0]


d2: 2

[5, 2, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0]

[0 1 1 0 0]


d3: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d4: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d5: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d6: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 5 2

h0, h1, h2, h3, h4, h5, h6: 2 3 2 0 0 0 0



##################################

n,k 5 3

d0: 2

[5, 3, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1]

[0 1 0 1 0]

[0 0 1 1 0]


d1: 2

[5, 3, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0]

[0 1 0 1 0]

[0 0 1 1 0]


d2: 1

[5, 3, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1]

[0 1 0 1 0]

[0 0 1 0 0]


d3: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d4: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d5: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d6: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 5 3

h0, h1, h2, h3, h4, h5, h6: 2 2 1 0 0 0 0



##################################

n,k 5 4

d0: 2

[5, 4, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1]

[0 1 0 0 1]

[0 0 1 0 1]

[0 0 0 1 1]


d1: 1

[5, 4, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]


d2: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d3: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d4: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d5: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d6: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 5 4

h0, h1, h2, h3, h4, h5, h6: 2 1 0 0 0 0 0



##################################

n,k 5 5

d0: 1

[5, 5, 1] Cyclic Linear Code over GF(2)


d1: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d2: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d3: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d4: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d5: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


d6: 0

[5, 0, 5] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 5 5

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 6 1

d0: 5

[6, 1, 5] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 0]


d1: 6

[6, 1, 6] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1]


d2: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d3: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d4: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d5: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d6: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 6 1

h0, h1, h2, h3, h4, h5, h6: 5 6 0 0 0 0 0



##################################

n,k 6 2

d0: 3

[6, 2, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1]

[0 1 1 1 0 0]


d1: 3

[6, 2, 3] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 1 0]

[0 1 1 1 0 0]


d2: 4

[6, 2, 4] Quasicyclic of degree 3 Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 1]

[0 1 1 1 1 0]


d3: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d4: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d5: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d6: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 6 2

h0, h1, h2, h3, h4, h5, h6: 3 3 4 0 0 0 0



##################################

n,k 6 3

d0: 2

[6, 3, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 0]

[0 1 0 1 0 0]

[0 0 1 1 0 0]


d1: 2

[6, 3, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0]

[0 1 0 1 0 0]

[0 0 1 1 0 0]


d2: 3

[6, 3, 3] Quasicyclic of degree 2 Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1]

[0 1 0 1 0 1]

[0 0 1 1 1 0]


d3: 2

[6, 3, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1]

[0 1 0 0 1 0]

[0 0 1 1 0 0]


d4: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d5: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d6: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 6 3

h0, h1, h2, h3, h4, h5, h6: 2 2 3 2 0 0 0



##################################

n,k 6 4

d0: 2

[6, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0]

[0 1 0 0 1 0]

[0 0 1 0 1 0]

[0 0 0 1 1 0]


d1: 1

[6, 4, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 0 0]


d2: 2

[6, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1]

[0 1 0 0 1 0]

[0 0 1 0 1 0]

[0 0 0 1 1 0]


d3: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d4: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d5: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d6: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 6 4

h0, h1, h2, h3, h4, h5, h6: 2 1 2 0 0 0 0



##################################

n,k 6 5

d0: 1

[6, 5, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]


d1: 2

[6, 5, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1]

[0 1 0 0 0 1]

[0 0 1 0 0 1]

[0 0 0 1 0 1]

[0 0 0 0 1 1]


d2: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d3: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d4: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d5: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d6: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 6 5

h0, h1, h2, h3, h4, h5, h6: 1 2 0 0 0 0 0



##################################

n,k 6 6

d0: 1

[6, 6, 1] Cyclic Linear Code over GF(2)


d1: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d2: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d3: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d4: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d5: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


d6: 0

[6, 0, 6] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 6 6

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 7 1

d0: 7

[7, 1, 7] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1]


d1: 6

[7, 1, 6] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 0]


d2: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d3: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 1

h0, h1, h2, h3, h4, h5, h6: 7 6 0 0 0 0 0



##################################

n,k 7 2

d0: 4

[7, 2, 4] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 1 1]

[0 1 1 1 1 0 0]


d1: 4

[7, 2, 4] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 1 1]

[0 1 1 1 1 0 0]


d2: 4

[7, 2, 4] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 1 0]

[0 1 1 1 1 0 0]


d3: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 2

h0, h1, h2, h3, h4, h5, h6: 4 4 4 0 0 0 0



##################################

n,k 7 3

d0: 3

[7, 3, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1]

[0 1 0 1 0 1 0]

[0 0 1 1 1 0 0]


d1: 3

[7, 3, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 1]

[0 1 0 1 0 1 0]

[0 0 1 1 1 0 0]


d2: 3

[7, 3, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0]

[0 1 0 1 0 1 0]

[0 0 1 1 1 0 0]


d3: 4

[7, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1]

[0 1 0 1 1 0 1]

[0 0 1 1 1 1 0]


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 3

h0, h1, h2, h3, h4, h5, h6: 3 3 3 4 0 0 0



##################################

n,k 7 4

d0: 2

[7, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0]

[0 1 0 0 1 0 0]

[0 0 1 0 1 0 0]

[0 0 0 1 1 0 0]


d1: 2

[7, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1]

[0 1 0 0 1 0 0]

[0 0 1 0 1 0 0]

[0 0 0 1 1 0 0]


d2: 2

[7, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0]

[0 1 0 0 1 0 0]

[0 0 1 0 1 0 0]

[0 0 0 1 1 0 0]


d3: 3

[7, 4, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 1]

[0 1 0 0 0 1 1]

[0 0 1 0 1 0 1]

[0 0 0 1 1 1 0]


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 4

h0, h1, h2, h3, h4, h5, h6: 2 2 2 3 0 0 0



##################################

n,k 7 5

d0: 2

[7, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1]

[0 1 0 0 0 1 0]

[0 0 1 0 0 1 0]

[0 0 0 1 0 1 0]

[0 0 0 0 1 1 0]


d1: 2

[7, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0]

[0 1 0 0 0 1 0]

[0 0 1 0 0 1 0]

[0 0 0 1 0 1 0]

[0 0 0 0 1 1 0]


d2: 1

[7, 5, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1]

[0 1 0 0 0 1 0]

[0 0 1 0 0 0 0]

[0 0 0 1 0 0 0]

[0 0 0 0 1 0 0]


d3: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 5

h0, h1, h2, h3, h4, h5, h6: 2 2 1 0 0 0 0



##################################

n,k 7 6

d0: 2

[7, 6, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1]

[0 1 0 0 0 0 1]

[0 0 1 0 0 0 1]

[0 0 0 1 0 0 1]

[0 0 0 0 1 0 1]

[0 0 0 0 0 1 1]


d1: 1

[7, 6, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1]

[0 1 0 0 0 0 0]

[0 0 1 0 0 0 0]

[0 0 0 1 0 0 0]

[0 0 0 0 1 0 0]

[0 0 0 0 0 1 0]


d2: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d3: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 6

h0, h1, h2, h3, h4, h5, h6: 2 1 0 0 0 0 0



##################################

n,k 7 7

d0: 1

[7, 7, 1] Cyclic Linear Code over GF(2)


d1: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d2: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d3: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d4: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d5: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


d6: 0

[7, 0, 7] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 7 7

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 8 1

d0: 7

[8, 1, 7] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 0]


d1: 8

[8, 1, 8] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1]


d2: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d3: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 1

h0, h1, h2, h3, h4, h5, h6: 7 8 0 0 0 0 0



##################################

n,k 8 2

d0: 5

[8, 2, 5] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 0 1 1]

[0 1 1 1 1 1 0 0]


d1: 4

[8, 2, 4] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 1 1 0]

[0 1 1 1 1 0 0 0]


d2: 4

[8, 2, 4] Quasicyclic of degree 4 Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 1 0 0]

[0 1 1 1 1 0 0 0]


d3: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 2

h0, h1, h2, h3, h4, h5, h6: 5 4 4 0 0 0 0



##################################

n,k 8 3

d0: 3

[8, 3, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 0]

[0 1 0 1 0 1 0 0]

[0 0 1 1 1 0 0 0]


d1: 4

[8, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1]

[0 1 0 1 1 0 1 0]

[0 0 1 1 1 1 0 0]


d2: 4

[8, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 1]

[0 1 0 1 1 0 1 0]

[0 0 1 1 1 1 0 0]


d3: 4

[8, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 0]

[0 1 0 1 1 0 1 0]

[0 0 1 1 1 1 0 0]


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 3

h0, h1, h2, h3, h4, h5, h6: 3 4 4 4 0 0 0



##################################

n,k 8 4

d0: 3

[8, 4, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1]

[0 1 0 0 0 1 0 1]

[0 0 1 0 1 0 1 0]

[0 0 0 1 1 1 0 0]


d1: 3

[8, 4, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1]

[0 1 0 0 0 1 1 0]

[0 0 1 0 1 0 1 0]

[0 0 0 1 1 1 0 0]


d2: 3

[8, 4, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 1 1]

[0 1 0 0 0 1 1 0]

[0 0 1 0 1 0 1 0]

[0 0 0 1 1 1 0 0]


d3: 3

[8, 4, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 1 0]

[0 1 0 0 0 1 1 0]

[0 0 1 0 1 0 1 0]

[0 0 0 1 1 1 0 0]


d4: 4

[8, 4, 4] Quasicyclic of degree 2 Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1]

[0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1]

[0 0 0 1 1 1 1 0]


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 4

h0, h1, h2, h3, h4, h5, h6: 3 3 3 3 4 0 0



##################################

n,k 8 5

d0: 2

[8, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 0]

[0 1 0 0 0 1 0 0]

[0 0 1 0 0 1 0 0]

[0 0 0 1 0 1 0 0]

[0 0 0 0 1 1 0 0]


d1: 2

[8, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0]

[0 1 0 0 0 1 0 0]

[0 0 1 0 0 1 0 0]

[0 0 0 1 0 1 0 0]

[0 0 0 0 1 1 0 0]


d2: 2

[8, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1]

[0 1 0 0 0 1 0 1]

[0 0 1 0 0 1 1 0]

[0 0 0 1 0 1 0 0]

[0 0 0 0 1 1 0 0]


d3: 2

[8, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1]

[0 1 0 0 0 0 1 0]

[0 0 1 0 0 1 0 0]

[0 0 0 1 0 1 0 0]

[0 0 0 0 1 1 0 0]


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 5

h0, h1, h2, h3, h4, h5, h6: 2 2 2 2 0 0 0



##################################

n,k 8 6

d0: 2

[8, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0]

[0 1 0 0 0 0 1 0]

[0 0 1 0 0 0 1 0]

[0 0 0 1 0 0 1 0]

[0 0 0 0 1 0 1 0]

[0 0 0 0 0 1 1 0]


d1: 1

[8, 6, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0]


d2: 2

[8, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1]

[0 1 0 0 0 0 1 0]

[0 0 1 0 0 0 1 0]

[0 0 0 1 0 0 1 0]

[0 0 0 0 1 0 1 0]

[0 0 0 0 0 1 1 0]


d3: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 6

h0, h1, h2, h3, h4, h5, h6: 2 1 2 0 0 0 0



##################################

n,k 8 7

d0: 1

[8, 7, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0]


d1: 2

[8, 7, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 1]

[0 0 1 0 0 0 0 1]

[0 0 0 1 0 0 0 1]

[0 0 0 0 1 0 0 1]

[0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 1 1]


d2: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d3: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 7

h0, h1, h2, h3, h4, h5, h6: 1 2 0 0 0 0 0



##################################

n,k 8 8

d0: 1

[8, 8, 1] Cyclic Linear Code over GF(2)


d1: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d2: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d3: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d4: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d5: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


d6: 0

[8, 0, 8] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 8 8

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 9 1

d0: 9

[9, 1, 9] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1]


d1: 8

[9, 1, 8] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 0]


d2: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d3: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 1

h0, h1, h2, h3, h4, h5, h6: 9 8 0 0 0 0 0



##################################

n,k 9 2

d0: 6

[9, 2, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 0 0 1 1]

[0 1 1 1 1 1 1 0 0]


d1: 5

[9, 2, 5] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 1 1 1]

[0 1 1 1 1 1 0 0 0]


d2: 4

[9, 2, 4] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 1 0 0 0]

[0 1 1 1 1 0 0 0 0]


d3: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 2

h0, h1, h2, h3, h4, h5, h6: 6 5 4 0 0 0 0



##################################

n,k 9 3

d0: 4

[9, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 0 1 0 1]

[0 1 0 1 0 0 1 1 0]

[0 0 1 1 1 1 0 0 0]


d1: 4

[9, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1 0]

[0 1 0 1 1 0 1 0 0]

[0 0 1 1 1 1 0 0 0]


d2: 4

[9, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 1 0]

[0 1 0 1 1 0 1 0 0]

[0 0 1 1 1 1 0 0 0]


d3: 4

[9, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 0 0]

[0 1 0 1 1 0 1 0 0]

[0 0 1 1 1 1 0 0 0]


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 3

h0, h1, h2, h3, h4, h5, h6: 4 4 4 4 0 0 0



##################################

n,k 9 4

d0: 4

[9, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1 1]

[0 1 0 0 1 0 1 0 1]

[0 0 1 0 1 1 0 1 0]

[0 0 0 1 1 1 1 0 0]


d1: 3

[9, 4, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1 0]

[0 1 0 0 0 1 1 0 0]

[0 0 1 0 1 0 1 0 0]

[0 0 0 1 1 1 0 0 0]


d2: 4

[9, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0 0 1]

[0 1 0 0 1 0 1 1 0]

[0 0 1 0 1 1 0 1 0]

[0 0 0 1 1 1 1 0 0]


d3: 4

[9, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1]

[0 1 0 0 1 0 1 1 0]

[0 0 1 0 1 1 0 1 0]

[0 0 0 1 1 1 1 0 0]


d4: 4

[9, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 0]

[0 1 0 0 1 0 1 1 0]

[0 0 1 0 1 1 0 1 0]

[0 0 0 1 1 1 1 0 0]


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 4

h0, h1, h2, h3, h4, h5, h6: 4 3 4 4 4 0 0



##################################

n,k 9 5

d0: 3

[9, 5, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 1]

[0 1 0 0 0 1 0 0 1]

[0 0 1 0 0 0 1 1 0]

[0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 1 1 0 0]


d1: 3

[9, 5, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1]

[0 1 0 0 0 1 0 0 1]

[0 0 1 0 0 0 1 1 0]

[0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 1 1 0 0]


d2: 3

[9, 5, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1]

[0 1 0 0 0 1 1 1 0]

[0 0 1 0 0 0 1 1 0]

[0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 1 1 0 0]


d3: 3

[9, 5, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1]

[0 1 0 0 0 0 1 1 1]

[0 0 1 0 0 1 0 0 1]

[0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 1 1 0 0]


d4: 2

[9, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 0 1 1]

[0 0 1 0 0 0 1 0 1]

[0 0 0 1 0 0 1 1 0]

[0 0 0 0 1 1 0 0 0]


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 5

h0, h1, h2, h3, h4, h5, h6: 3 3 3 3 2 0 0



##################################

n,k 9 6

d0: 2

[9, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 0]

[0 1 0 0 0 0 1 0 0]

[0 0 1 0 0 0 1 0 0]

[0 0 0 1 0 0 1 0 0]

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 1 0 0]


d1: 2

[9, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 1 0 0]

[0 0 1 0 0 0 1 0 0]

[0 0 0 1 0 0 1 0 0]

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 1 0 0]


d2: 2

[9, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 1 0 0]

[0 0 1 0 0 0 1 0 0]

[0 0 0 1 0 0 1 0 0]

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 1 0 0]


d3: 2

[9, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 0 1 1]

[0 0 1 0 0 0 1 0 1]

[0 0 0 1 0 0 1 1 0]

[0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 1 1 0 0]


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 6

h0, h1, h2, h3, h4, h5, h6: 2 2 2 2 0 0 0



##################################

n,k 9 7

d0: 2

[9, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 1 0]

[0 0 0 1 0 0 0 1 0]

[0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 1 1 0]


d1: 2

[9, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 1 0]

[0 0 0 1 0 0 0 1 0]

[0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 1 1 0]


d2: 1

[9, 7, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 0]


d3: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 7

h0, h1, h2, h3, h4, h5, h6: 2 2 1 0 0 0 0



##################################

n,k 9 8

d0: 2

[9, 8, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 1]

[0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 1 1]


d1: 1

[9, 8, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0]


d2: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d3: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 8

h0, h1, h2, h3, h4, h5, h6: 2 1 0 0 0 0 0



##################################

n,k 9 9

d0: 1

[9, 9, 1] Cyclic Linear Code over GF(2)


d1: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d2: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d3: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d4: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d5: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


d6: 0

[9, 0, 9] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 9 9

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 10 1

d0: 9

[10, 1, 9] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 0]


d1: 10

[10, 1, 10] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 1]


d2: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d3: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 1

h0, h1, h2, h3, h4, h5, h6: 9 10 0 0 0 0 0



##################################

n,k 10 2

d0: 6

[10, 2, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 0 0 1 1 0]

[0 1 1 1 1 1 1 0 0 0]


d1: 5

[10, 2, 5] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 1 1 1 0]

[0 1 1 1 1 1 0 0 0 0]


d2: 6

[10, 2, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 0 0 1 1 1]

[0 1 1 1 1 1 1 0 0 0]


d3: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 2

h0, h1, h2, h3, h4, h5, h6: 6 5 6 0 0 0 0



##################################

n,k 10 3

d0: 5

[10, 3, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1 0 1]

[0 1 0 1 1 0 0 1 1 0]

[0 0 1 1 1 1 1 0 0 0]


d1: 5

[10, 3, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 1 0 1 0 1]

[0 1 0 1 1 0 0 1 1 0]

[0 0 1 1 1 1 1 0 0 0]


d2: 4

[10, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 1 0 0]

[0 1 0 1 1 0 1 0 0 0]

[0 0 1 1 1 1 0 0 0 0]


d3: 4

[10, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 0 0 0]

[0 1 0 1 1 0 1 0 0 0]

[0 0 1 1 1 1 0 0 0 0]


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 3

h0, h1, h2, h3, h4, h5, h6: 5 5 4 4 0 0 0



##################################

n,k 10 4

d0: 4

[10, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1 1 0]

[0 1 0 0 1 0 1 0 1 0]

[0 0 1 0 1 1 0 1 0 0]

[0 0 0 1 1 1 1 0 0 0]


d1: 4

[10, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 1 0 1]

[0 1 0 0 1 0 1 0 1 0]

[0 0 1 0 1 1 0 1 0 0]

[0 0 0 1 1 1 1 0 0 0]


d2: 4

[10, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0 0 1 0]

[0 1 0 0 1 0 1 1 0 0]

[0 0 1 0 1 1 0 1 0 0]

[0 0 0 1 1 1 1 0 0 0]


d3: 4

[10, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1 0]

[0 1 0 0 1 0 1 1 0 0]

[0 0 1 0 1 1 0 1 0 0]

[0 0 0 1 1 1 1 0 0 0]


d4: 4

[10, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 0 0]

[0 1 0 0 1 0 1 1 0 0]

[0 0 1 0 1 1 0 1 0 0]

[0 0 0 1 1 1 1 0 0 0]


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 4

h0, h1, h2, h3, h4, h5, h6: 4 4 4 4 4 0 0



##################################

n,k 10 5

d0: 3

[10, 5, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 1 0]

[0 1 0 0 0 1 0 0 1 0]

[0 0 1 0 0 0 1 1 0 0]

[0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 1 1 1 0 0 0]


d1: 4

[10, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 1]

[0 1 0 0 0 1 1 0 0 1]

[0 0 1 0 0 1 0 1 1 0]

[0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 1 1 1 1 0 0]


d2: 3

[10, 5, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1 0]

[0 1 0 0 0 1 1 1 0 0]

[0 0 1 0 0 0 1 1 0 0]

[0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 1 1 1 0 0 0]


d3: 4

[10, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 0 0 1]

[0 1 0 0 0 0 1 1 1 0]

[0 0 1 0 0 1 0 1 1 0]

[0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 1 1 1 1 0 0]


d4: 4

[10, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 1]

[0 1 0 0 0 1 0 1 1 1]

[0 0 1 0 0 1 1 0 0 1]

[0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 1 1 1 1 0 0]


d5: 2

[10, 5, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 1 0 0]

[0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 1 1 0 0 0 0]


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 5

h0, h1, h2, h3, h4, h5, h6: 3 4 3 4 4 2 0



##################################

n,k 10 6

d0: 3

[10, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 1 0 1]

[0 0 1 0 0 0 1 0 0 1]

[0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 1 1 1 0 0]


d1: 3

[10, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 1]

[0 1 0 0 0 0 1 0 0 1]

[0 0 1 0 0 0 1 1 1 0]

[0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 1 1 1 0 0]


d2: 3

[10, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 1]

[0 1 0 0 0 0 0 1 1 1]

[0 0 1 0 0 0 1 0 0 1]

[0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 1 1 1 0 0]


d3: 2

[10, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 1 0 1]

[0 0 1 0 0 0 0 1 1 0]

[0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 1 1 0 0 0]


d4: 2

[10, 6, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 1 0 0]

[0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 1 1 0 0 0]


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 6

h0, h1, h2, h3, h4, h5, h6: 3 3 3 2 2 0 0



##################################

n,k 10 7

d0: 2

[10, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 0]

[0 1 0 0 0 0 0 1 0 0]

[0 0 1 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 1 1 0 0]


d1: 2

[10, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 0]

[0 1 0 0 0 0 0 1 0 0]

[0 0 1 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 1 1 0 0]


d2: 2

[10, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 1 0 1]

[0 0 1 0 0 0 0 1 1 0]

[0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 1 1 0 0]


d3: 2

[10, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 1 1 0 0]


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 7

h0, h1, h2, h3, h4, h5, h6: 2 2 2 2 0 0 0



##################################

n,k 10 8

d0: 2

[10, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 1 1 0]


d1: 1

[10, 8, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]


d2: 2

[10, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 1 1 0]


d3: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 8

h0, h1, h2, h3, h4, h5, h6: 2 1 2 0 0 0 0



##################################

n,k 10 9

d0: 1

[10, 9, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]


d1: 2

[10, 9, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1]


d2: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d3: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 9

h0, h1, h2, h3, h4, h5, h6: 1 2 0 0 0 0 0



##################################

n,k 10 10

d0: 1

[10, 10, 1] Cyclic Linear Code over GF(2)


d1: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d2: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d3: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d4: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d5: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


d6: 0

[10, 0, 10] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 10 10

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 11 1

d0: 11

[11, 1, 11] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 1 1]


d1: 10

[11, 1, 10] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 1 0]


d2: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d3: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 1

h0, h1, h2, h3, h4, h5, h6: 11 10 0 0 0 0 0



##################################

n,k 11 2

d0: 6

[11, 2, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 0 0 1 1 0 0]

[0 1 1 1 1 1 1 0 0 0 0]


d1: 7

[11, 2, 7] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 0 0 0 1 1 1]

[0 1 1 1 1 1 1 1 0 0 0]


d2: 6

[11, 2, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 0 0 1 1 1 0]

[0 1 1 1 1 1 1 0 0 0 0]


d3: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 2

h0, h1, h2, h3, h4, h5, h6: 6 7 6 0 0 0 0



##################################

n,k 11 3

d0: 5

[11, 3, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1 0 1 0]

[0 1 0 1 1 0 0 1 1 0 0]

[0 0 1 1 1 1 1 0 0 0 0]


d1: 6

[11, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 0 1 0 1 0 1]

[0 1 0 1 1 1 0 0 1 1 0]

[0 0 1 1 1 1 1 1 0 0 0]


d2: 5

[11, 3, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0 1 1 0 1]

[0 1 0 1 0 0 0 1 1 1 0]

[0 0 1 1 1 1 1 0 0 0 0]


d3: 4

[11, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 0 0 0 0]

[0 1 0 1 1 0 1 0 0 0 0]

[0 0 1 1 1 1 0 0 0 0 0]


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 3

h0, h1, h2, h3, h4, h5, h6: 5 6 5 4 0 0 0



##################################

n,k 11 4

d0: 4

[11, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1 1 0 0]

[0 1 0 0 1 0 1 0 1 0 0]

[0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0]


d1: 5

[11, 4, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 1 1]

[0 1 0 0 1 0 1 0 1 0 1]

[0 0 1 0 1 1 0 0 1 1 0]

[0 0 0 1 1 1 1 1 0 0 0]


d2: 4

[11, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0 0 1 0 0]

[0 1 0 0 1 0 1 1 0 0 0]

[0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0]


d3: 4

[11, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1 0 0]

[0 1 0 0 1 0 1 1 0 0 0]

[0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0]


d4: 4

[11, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 0 0 0]

[0 1 0 0 1 0 1 1 0 0 0]

[0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0]


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 4

h0, h1, h2, h3, h4, h5, h6: 4 5 4 4 4 0 0



##################################

n,k 11 5

d0: 4

[11, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 1 0 1]

[0 1 0 0 0 1 0 0 1 1 0]

[0 0 1 0 0 1 0 1 0 1 0]

[0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 1 1 1 1 0 0 0]


d1: 4

[11, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 1 0]

[0 1 0 0 0 1 1 0 0 1 0]

[0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 1 1 1 1 0 0 0]


d2: 4

[11, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 0 1]

[0 1 0 0 0 1 1 0 0 1 0]

[0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 1 1 1 1 0 0 0]


d3: 4

[11, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 0 0 1 0]

[0 1 0 0 0 0 1 1 1 0 0]

[0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 1 1 1 1 0 0 0]


d4: 4

[11, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 0 1]

[0 1 0 0 0 0 1 1 1 1 0]

[0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 1 1 1 1 0 0 0]


d5: 4

[11, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 1 1 1]

[0 1 0 0 0 1 1 0 0 0 1]

[0 0 1 0 0 1 1 0 0 1 0]

[0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 1 1 1 1 0 0 0]


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 5

h0, h1, h2, h3, h4, h5, h6: 4 4 4 4 4 4 0



##################################

n,k 11 6

d0: 4

[11, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 0 1 1]

[0 1 0 0 0 0 1 0 1 0 1]

[0 0 1 0 0 0 1 1 0 0 1]

[0 0 0 1 0 0 1 0 1 1 0]

[0 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 1 1 1 1 0 0]


d1: 3

[11, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 1 0]

[0 1 0 0 0 0 1 0 0 1 0]

[0 0 1 0 0 0 1 1 1 0 0]

[0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 1 1 1 0 0 0]


d2: 4

[11, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 1 0 1]

[0 1 0 0 0 0 1 1 0 0 1]

[0 0 1 0 0 0 0 1 1 1 0]

[0 0 0 1 0 0 1 0 1 1 0]

[0 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 1 1 1 1 0 0]


d3: 3

[11, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 0 0 1]

[0 1 0 0 0 0 1 0 0 1 0]

[0 0 1 0 0 0 1 1 1 0 0]

[0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 1 1 1 0 0 0]


d4: 3

[11, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 1 1 1 0 1]

[0 0 1 0 0 0 1 1 1 1 0]

[0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 1 1 1 0 0 0]


d5: 3

[11, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 1 1]

[0 1 0 0 0 0 0 1 1 1 1]

[0 0 1 0 0 0 1 0 0 0 1]

[0 0 0 1 0 0 1 0 0 1 0]

[0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 1 1 1 0 0 0]


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 6

h0, h1, h2, h3, h4, h5, h6: 4 3 4 3 3 3 0



##################################

n,k 11 7

d0: 3

[11, 7, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 0 1 0 1]

[0 0 1 0 0 0 0 1 0 0 1]

[0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 0 1 1 1 0 0]


d1: 3

[11, 7, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 0 1 0 1 1]

[0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 1 0 0 0 1 0 0 1]

[0 0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 0 1 1 1 0 0]


d2: 3

[11, 7, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 0 1]

[0 1 0 0 0 0 0 0 1 0 1]

[0 0 1 0 0 0 0 1 0 0 1]

[0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 0 1 1 1 0 0]


d3: 2

[11, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 1 0 0]

[0 0 1 0 0 0 0 1 0 0 0]

[0 0 0 1 0 0 0 1 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 1 1 0 0 0]


d4: 2

[11, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 0 0 0 1 1]

[0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 1 1 0 0 0]


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 7

h0, h1, h2, h3, h4, h5, h6: 3 3 3 2 2 0 0



##################################

n,k 11 8

d0: 2

[11, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0]

[0 0 1 0 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 0 0]


d1: 2

[11, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 0 1 0 0]

[0 0 1 0 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 0 0]


d2: 2

[11, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 1 0 0]

[0 0 1 0 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 0 0]


d3: 2

[11, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 0 0 0 1 1]

[0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 0 0]


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 8

h0, h1, h2, h3, h4, h5, h6: 2 2 2 2 0 0 0



##################################

n,k 11 9

d0: 2

[11, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 0 1 1 0]


d1: 2

[11, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 0 1 1 0]


d2: 1

[11, 9, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0]


d3: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 9

h0, h1, h2, h3, h4, h5, h6: 2 2 1 0 0 0 0



##################################

n,k 11 10

d0: 2

[11, 10, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 1 1]


d1: 1

[11, 10, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 0]


d2: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d3: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 10

h0, h1, h2, h3, h4, h5, h6: 2 1 0 0 0 0 0



##################################

n,k 11 11

d0: 1

[11, 11, 1] Cyclic Linear Code over GF(2)


d1: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d2: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d3: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d4: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d5: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


d6: 0

[11, 0, 11] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 11 11

h0, h1, h2, h3, h4, h5, h6: 1 0 0 0 0 0 0



##################################

n,k 12 1

d0: 11

[12, 1, 11] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 1 1 0]


d1: 12

[12, 1, 12] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 1 1 1]


d2: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d3: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d4: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d5: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d6: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 12 1

h0, h1, h2, h3, h4, h5, h6: 11 12 0 0 0 0 0



##################################

n,k 12 2

d0: 7

[12, 2, 7] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 0 0 0 0 1 1 1 1]

[0 1 1 1 1 1 1 1 0 0 0 0]


d1: 7

[12, 2, 7] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 0 0 0 1 1 1 0]

[0 1 1 1 1 1 1 1 0 0 0 0]


d2: 8

[12, 2, 8] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 1 0 0 0 1 1 1]

[0 1 1 1 1 1 1 1 1 0 0 0]


d3: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d4: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d5: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d6: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 12 2

h0, h1, h2, h3, h4, h5, h6: 7 7 8 0 0 0 0



##################################

n,k 12 3

d0: 6

[12, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 0 1 0 1 0 1 1]

[0 1 0 1 1 1 0 0 1 1 0 0]

[0 0 1 1 1 1 1 1 0 0 0 0]


d1: 6

[12, 3, 6] Line 1 1 1 1 0 0 0 0]


d1: 6

[12, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 0 1 0 1 0 1 0]

[0 1 0 1 1 1 0 0 1 1 0 0]

[0 0 1 1 1 1 1 1 0 0 0 0]


d2: 5

[12, 3, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0 1 1 0 1 0]

[0 1 0 1 0 0 0 1 1 1 0 0]

[0 0 1 1 1 1 1 0 0 0 0 0]


d3: 6

[12, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 0 1 1 0 1]

[0 1 0 1 1 0 0 0 1 1 1 0]

[0 0 1 1 1 1 1 1 0 0 0 0]


d4: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d5: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d6: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 12 3

h0, h1, h2, h3, h4, h5, h6: 6 6 5 6 0 0 0



##################################

n,k 12 4

d0: 5

[12, 4, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 0 1 0 0 1]

[0 1 0 0 1 0 1 0 1 0 1 0]

[0 0 1 0 1 1 0 0 1 1 0 0]

[0 0 0 1 1 1 1 1 0 0 0 0]


d1: 5

[12, 4, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 1 1 0]

[0 1 0 0 1 0 1 0 1 0 1 0]

[0 0 1 0 1 1 0 0 1 1 0 0]

[0 0 0 1 1 1 1 1 0 0 0 0]


d2: 6

[12, 4, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 0 1 0 1 1]

[0 1 0 0 1 1 0 1 0 1 0 1]

[0 0 1 0 1 1 1 0 0 1 1 0]

[0 0 0 1 1 1 1 1 1 0 0 0]



d3: 4

[12, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1 0 0 0]

[0 1 0 0 1 0 1 1 0 0 0 0]

[0 0 1 0 1 1 0 1 0 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0 0]




d4: 4

[12, 4, 4] Quasicyclic of degree 3 Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 0 0 0 0]

[0 1 0 0 1 0 1 1 0 0 0 0]

[0 0 1 0 1 1 0 1 0 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0 0]


d5: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


d6: 0

[12, 0, 12] Cyclic Linear Code over GF(2)


***Summary of hulls from 0 to 6:***

n,k 12 4

h0, h1, h2, h3, h4, h5, h6: 5 5 6 4 4 0 0



Part 2

Calculation based on building-up construction fro n >= 12 and k>=5.

There are given two generator matrices. The first one is a construction form(I, II, III, IV).

The second one is a row echelon form of the construction form.


"h=1"


n=12


k=1

[12,1,12]

Repetition code



k=2

[12, 2, 7] Exhaustive search



k=3

[12, 3, 6] code. See above or Magma code

> C:=BKLC(GF(2), 12, 3);

> C;

[12, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1 1 0 1 0]

[0 1 0 1 1 0 0 1 0 1 1 0]

[0 0 1 1 1 1 0 0 1 1 1 1]

> Hull(C);

[12, 1, 8] Quasicyclic of degree 6 Linear Code over GF(2)

Generator matrix:

[0 0 1 1 1 1 0 0 1 1 1 1]



k=4

[12, 4, 5] Exhaustive search (see above or below)

[12, 4, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 1 1 0]

[0 1 0 0 1 0 1 0 1 0 1 0]

[0 0 1 0 1 1 0 0 1 1 0 0]

[0 0 0 1 1 1 1 1 0 0 0 0]



k=5

[12, 5, 4] code from Magma result

> C:=BKLC(GF(2), 12, 5);

> C;

[12, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 0 0 0 1 1 0]

[0 1 0 1 0 0 0 0 0 1 0 1]

[0 0 1 1 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 1 0 1 1 0]

[0 0 0 0 0 1 0 1 0 1 0 1]

> Hull(C);

[12, 1, 4] Quasicyclic of degree 3 Linear Code over GF(2)

Generator matrix:

[1 1 1 1 0 0 0 0 0 0 0 0]



k=6 %%%

Construction I from a [10, 5, 3] code with h=0

88

[1 0 1 1 1 1 0 1 1 1 0 0]

[1 1 1 0 0 0 1 0 0 0 1 0]

[1 1 0 1 0 0 1 0 0 0 0 1]

[1 1 0 0 1 0 0 0 0 0 1 1]

[0 0 0 0 0 1 1 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1]


[12, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 1 0 1 0 1]

[0 1 0 0 0 0 1 1 0 1 1 0]

[0 0 1 0 1 0 1 0 0 0 0 1]

[0 0 0 1 1 0 1 0 0 0 1 0]

[0 0 0 0 0 1 1 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1]

hull dim 1

[ <0, 1>, <4, 12>, <5, 14>, <6, 12>, <7, 12>, <8, 7>, <9, 6> ]



k=7

Construction III from a [10, 6, 3] code with h=0

38 %%%

[1 1 1 1 1 1 0 1 1 0 0 0]

[1 0 1 0 0 0 1 0 0 1 0 0]

[1 0 0 1 0 0 1 0 0 0 1 0]

[1 0 0 0 1 0 0 0 0 1 1 0]

[1 0 0 0 0 1 1 0 0 0 0 1]

[1 0 0 0 0 0 0 1 0 1 0 1]

[1 0 0 0 0 0 0 0 1 0 1 1]


[12, 7, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 1 1]

[0 1 0 0 0 0 1 0 1 1 0 0]

[0 0 1 0 0 0 1 0 1 1 1 1]

[0 0 0 1 0 0 1 0 1 0 0 1]

[0 0 0 0 1 0 0 0 1 1 0 1]

[0 0 0 0 0 1 1 0 1 0 1 0]

[0 0 0 0 0 0 0 1 1 1 1 0]

hull dim 1

[ <0, 1>, <4, 38>, <6, 52>, <8, 33>, <10, 4> ]



k=8

Construction III from a [10, 7, 2] code with h=0

262 %%%

[1 1 1 1 1 1 0 0 0 0 1 1]

[1 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 0 0 1 1 0]

[1 0 0 0 0 1 0 0 0 1 1 1]

[0 0 0 0 0 0 1 0 0 0 1 1]

[1 0 0 0 0 0 0 1 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1]


[12, 8, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 1 0 1]

[0 1 0 0 0 0 0 1 0 0 0 1]

[0 0 1 0 0 0 0 1 0 1 1 0]

[0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 1 0 1 0 0 1 0]

[0 0 0 0 0 0 1 0 0 0 1 1]

[0 0 0 0 0 0 0 0 1 1 1 1]

hull dim 1

[ <0, 1>, <3, 17>, <4, 38>, <5, 44>, <6, 52>, <7, 54>, <8, 33>, <9, 12>, <10, 

4>, <11, 1> ]



k=9

Construction I from a [10, 8, 2] code with h=0

1 %%%

[1 0 1 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 1 1]


[12, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 1 1]

hull dim 1

[ <0, 1>, <2, 37>, <4, 162>, <6, 210>, <8, 93>, <10, 9> ]



k=10

[12, 10, 1] code, exhaustive search and direct computation

[12, 10, 1] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 1]

> Hull(C);

[12, 1, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0]



k=11

[12, 11, 2] code. Magma data

[12, 11, 2] Cyclic Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 1 1]

> Hull(C);

[12, 1, 12] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1 1 1 1 1 1 1 1 1]



n=13


k=1

[13, 1, 12] code.

Self-orthogonal [13, 1, 12] code

Generator matrix

[1 1 1 1 1 1 1 1 1 1 1 1 0]



k=2

Construction I

> C:=BKLC(GF(2), 13, 2);

> C;

[13, 2, 8] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 0 0 0 0 0 1 1 1 1]

[0 0 0 0 1 1 1 1 1 1 1 1 1]

> Hull(C);

[13, 1, 8] Linear Code over GF(2)

Generator matrix:

[1 1 1 1 0 0 0 0 0 1 1 1 1]



k=3

Construction I from a [11, 2, 6] code with h=0

133 %%%

[1 0 1 0 1 1 0 0 0 1 1 0 0]

[1 1 1 1 1 0 0 0 1 1 0 0 1]

[0 0 0 0 0 1 1 1 1 1 0 0 1]


[13, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 1 0 1 1 1 0 1 0 1]

[0 1 0 1 0 0 1 1 0 1 1 0 0]

[0 0 0 0 0 1 1 1 1 1 0 0 1]

hull dim 1

[ <0, 1>, <6, 4>, <8, 3> ]



k=4

Construction I from a [11, 3, 5] code with h=0

165 %%%

[1 0 0 1 1 1 0 1 1 1 1 0 0]

[1 1 1 0 0 1 1 0 1 1 0 1 1]

[0 0 0 1 0 1 1 1 0 1 0 0 1]

[0 0 0 0 1 1 1 1 1 0 0 1 0]


[13, 4, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 0 1 1 1]

[0 1 1 0 0 0 1 1 1 1 1 0 0]

[0 0 0 1 0 1 1 1 0 1 0 0 1]

[0 0 0 0 1 1 1 1 1 0 0 1 0]

hull dim 1

[ <0, 1>, <6, 6>, <7, 6>, <8, 1>, <9, 2> ]



k=5

Construction I from a [11, 4, 4] code with h=0

83 %%%

[1 0 1 1 1 0 1 1 1 1 0 0 0]

[1 1 1 0 0 0 1 1 0 0 1 0 0]

[1 1 0 1 0 0 1 0 1 0 0 1 0]

[1 1 0 0 1 0 1 0 1 0 1 0 1]

[0 0 0 0 0 1 1 1 0 0 0 1 1]


[13, 5, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 0 0 1 1 1 0]

[0 1 0 0 0 0 0 0 1 1 0 1 1]

[0 0 1 0 1 0 0 1 1 0 0 0 1]

[0 0 0 1 1 0 0 0 0 0 1 1 1]

[0 0 0 0 0 1 1 1 0 0 0 1 1]

hull dim 1

[ <0, 1>, <5, 5>, <6, 12>, <7, 7>, <8, 3>, <9, 3>, <11, 1> ]



k=6

Construction I from a [11, 5, 4] code with h=0

9  %%%

[1 0 1 0 0 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 1 0 1 1 1]

[0 0 0 1 0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 0 0 1 1 0 0 1 1]

[1 1 0 0 0 1 0 0 0 1 1 1 0]

[1 1 0 0 0 0 1 1 1 0 1 0 1]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 1 1 0 0 1]

[0 1 0 0 0 0 0 1 0 1 1 0 0]

[0 0 1 0 0 0 1 1 0 0 0 1 0]

[0 0 0 1 0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 0 0 1 1 0 0 1 1]

[0 0 0 0 0 1 1 1 1 1 0 1 1]

hull dim 1

[ <0, 1>, <4, 12>, <5, 8>, <6, 12>, <7, 10>, <8, 7>, <9, 12>, <11, 2> ]



k=7

Construction I from a [11, 6, 4] code with h=0

9 %%%

[1 0 1 0 0 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 1 0 1 1]

[0 0 0 1 0 0 0 1 0 1 1 1 1]

[0 0 0 0 1 0 0 1 0 1 0 0 1]

[1 1 0 0 0 1 0 0 0 1 1 0 1]

[1 1 0 0 0 0 1 1 0 1 0 1 0]

[0 0 0 0 0 0 0 0 1 1 1 1 0]


[13, 7, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 0 0 1 1 0]

[0 1 0 0 0 0 0 1 0 1 1 0 0]

[0 0 1 0 0 0 1 1 0 0 0 0 1]

[0 0 0 1 0 0 0 1 0 1 1 1 1]

[0 0 0 0 1 0 0 1 0 1 0 0 1]

[0 0 0 0 0 1 1 1 0 0 1 1 1]

[0 0 0 0 0 0 0 0 1 1 1 1 0]

hull dim 1

[ <0, 1>, <4, 26>, <6, 48>, <8, 45>, <10, 8> ]



k=8

Construction I from a [11, 7, 3] code with h=0

8 %%%

[1 0 1 0 0 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 1 0 1 1]

[0 0 0 1 0 0 0 0 0 1 1 0 1]

[0 0 0 0 1 0 0 0 0 0 1 1 0]

[1 1 0 0 0 1 0 0 0 1 1 1 0]

[1 1 0 0 0 0 1 0 0 1 1 1 1]

[0 0 0 0 0 0 0 1 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 0 0 1 1]


[13, 8, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 0 0 1 0 1]

[0 1 0 0 0 0 0 0 0 1 0 1 0]

[0 0 1 0 0 0 1 0 0 0 1 0 0]

[0 0 0 1 0 0 0 0 0 1 1 0 1]

[0 0 0 0 1 0 0 0 0 0 1 1 0]

[0 0 0 0 0 1 1 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 0 0 1 1]

hull dim 1

[ <0, 1>, <3, 12>, <4, 25>, <5, 34>, <6, 50>, <7, 58>, <8, 45>, <9, 22>, <10, 

6>, <11, 2>, <12, 1> ]



k=9

Construction I from a [11, 8, 2] code with h=0

1 %%%

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 0 1 1]


[13, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 0 1 1]

hull dim 1

[ <0, 1>, <2, 37>, <4, 162>, <6, 210>, <8, 93>, <10, 9> ]



k=10

Construction I from a [11, 9, 2] code with h=0

1 %%%

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 0 0 1 1]

[0 0 0 0 0 1 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 0 0 0 1 1 0]


[13, 10, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 0 0 1 1]

[0 0 0 0 0 1 0 0 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 0 0 0 1 1 0]

hull dim 1

[ <0, 1>, <2, 37>, <3, 9>, <4, 162>, <5, 93>, <6, 210>, <7, 210>, <8, 93>, <9, 

162>, <10, 9>, <11, 37>, <13, 1> ]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

"h=2"


n=12


k=2

[12, 2, 8] self-orthogonal code

d2: 8

[12, 2, 8] Linear Code over GF(2)

Generator matrix:

[1 0 1 1 1 1 0 0 0 1 1 1]

[0 1 1 1 1 1 1 1 1 0 0 0]



k=3

[12, 3, 5] exhaustive method (see above or below)

d2: 5

[12, 3, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 0 1 1 0 1 0]

[0 1 0 1 0 0 0 1 1 1 0 0]

[0 0 1 1 1 1 1 0 0 0 0 0]



k=4

[12, 4, 6] exhaustive method (see above or below)

d2: 6

[12, 4, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 0 1 0 1 1]

[0 1 0 0 1 1 0 1 0 1 0 1]

[0 0 1 0 1 1 1 0 0 1 1 0]

[0 0 0 1 1 1 1 1 1 0 0 0]



k=5

Construction III from a [10, 4, 4] code with h=0

9 %%%

[1 1 0 0 0 1 1 0 0 0 0 0]

[1 0 1 0 0 0 1 1 1 0 0 1]

[0 0 0 1 0 0 0 1 1 1 0 1]

[1 0 0 0 1 0 1 0 1 0 1 1]

[1 0 0 0 0 1 0 0 1 1 1 1]


[12, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1 1 1 1]

[0 1 0 0 0 0 1 0 1 1 1 1]

[0 0 1 0 0 1 1 1 0 1 1 0]

[0 0 0 1 0 0 0 1 1 1 0 1]

[0 0 0 0 1 1 1 0 0 1 0 0]

hull dim 2

[ <0, 1>, <4, 4>, <5, 7>, <6, 8>, <7, 7>, <8, 3>, <9, 1>, <11, 1> ]



k=6

[12, 6, 4] 

Construction III from a [10, 5, 3] code with h=0

70 %%%

[1 1 1 1 1 1 0 0 1 1 0 0]

[1 0 1 0 0 0 1 0 0 0 1 0]

[1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 1 0 0 0 0 0 1 1]

[0 0 0 0 0 1 1 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1]


[12, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 0 0 0 1 1]

[0 1 0 0 0 0 1 0 0 1 1 0]

[0 0 1 0 1 0 1 0 0 0 0 1]

[0 0 0 1 1 0 1 0 0 0 1 0]

[0 0 0 0 0 1 1 0 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1]

hull dim 2

[ <0, 1>, <4, 26>, <6, 24>, <8, 13> ]



k=7

Construction III from a [10, 6, 3] code with h=0

10 %%%

[1 1 1 1 0 1 1 0 0 0 0 0]

[1 0 1 0 0 0 0 0 1 0 1 1]

[1 0 0 1 0 0 0 0 1 1 0 1]

[0 0 0 0 1 0 0 0 0 1 1 0]

[1 0 0 0 0 1 0 0 0 1 0 1]

[1 0 0 0 0 0 1 0 1 1 1 1]

[0 0 0 0 0 0 0 1 1 1 1 0]


[12, 7, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 0 1 1 1 1]

[0 1 0 0 0 0 1 0 0 0 1 1]

[0 0 1 0 0 0 1 0 0 1 0 0]

[0 0 0 1 0 0 1 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 1 1 0 1 0 1 0]

[0 0 0 0 0 0 0 1 1 1 1 0]

hull dim 2

[ <0, 1>, <3, 8>, <4, 16>, <5, 24>, <6, 30>, <7, 24>, <8, 15>, <9, 8>, <10, 2> ]



k=8

Construction III from a  [10, 7, 2] code with h=0

134 %%%

[1 1 1 1 1 1 0 0 0 1 1 0]

[0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 0 1 0 1]

[1 0 0 0 1 0 0 0 0 1 1 0]

[1 0 0 0 0 1 0 0 0 1 1 1]

[1 0 0 0 0 0 1 0 0 0 1 1]

[1 0 0 0 0 0 0 1 0 1 0 1]

[0 0 0 0 0 0 0 0 1 1 1 1]


[12, 8, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 1 0 1]

[0 1 0 0 0 0 0 1 0 1 0 0]

[0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 1 0 0 1 1]

[0 0 0 0 0 1 0 1 0 0 1 0]

[0 0 0 0 0 0 1 1 0 1 1 0]

[0 0 0 0 0 0 0 0 1 1 1 1]

hull dim 2

[ <0, 1>, <3, 16>, <4, 39>, <5, 48>, <6, 48>, <7, 48>, <8, 39>, <9, 16>, <12, 1>

]



k=9

Construction III from a [10, 8, 2] code with h=0

3

[1 1 0 1 1 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 1 1]

[1 0 0 1 0 0 0 0 0 0 1 1]

[1 0 0 0 1 0 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 0 0 1 1]

[0 0 0 0 0 0 1 0 0 0 1 1]

[0 0 0 0 0 0 0 1 0 0 1 1]

[0 0 0 0 0 0 0 0 1 0 1 1]

[0 0 0 0 0 0 0 0 0 1 1 1]


[12, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 0 0 0 1 0]

[0 1 0 0 1 0 0 0 0 0 1 1]

[0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 1 1 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1]

[0 0 0 0 0 0 1 0 0 0 1 1]

[0 0 0 0 0 0 0 1 0 0 1 1]

[0 0 0 0 0 0 0 0 1 0 1 1]

[0 0 0 0 0 0 0 0 0 1 1 1]

hull dim 2

[ <0, 1>, <2, 15>, <3, 22>, <4, 42>, <5, 120>, <6, 126>, <7, 84>, <8, 69>, <9, 

24>, <10, 3>, <11, 6> ]



k=10

Construction III from a [10, 9, 1] code with h=0

1 %%%

[1 1 1 1 1 1 1 1 1 1 1 1]

[1 0 1 0 0 0 0 0 0 0 0 0]

[1 0 0 0 1 0 0 0 0 0 0 0]

[1 0 0 0 0 1 0 0 0 0 0 0]

[1 0 0 0 0 0 1 0 0 0 0 0]

[1 0 0 0 0 0 0 1 0 0 0 0]

[1 0 0 0 0 0 0 0 1 0 0 0]

[1 0 0 0 0 0 0 0 0 1 0 0]

[1 0 0 0 0 0 0 0 0 0 1 0]

[1 0 0 0 0 0 0 0 0 0 0 1]


[12, 10, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 1]

[0 1 0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 0 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 1]

[0 0 0 0 0 0 0 0 0 0 1 1]

hull dim 2

[ <0, 1>, <2, 46>, <4, 255>, <6, 420>, <8, 255>, <10, 46>, <12, 1> ]



n=13


k=2

Direct calculation or

There exists a self-orthogonal [13,2 8] code

[13, 2, 8] code 

Generator matrix

[1 1 1 1 1 1 1 1 0 0 0 0 0]

[0 0 0 0 1 1 1 1 1 1 1 1 0]


k=3

Construction III from a [11, 2, 6] code with h=0

130 %%%

[1 1 1 1 0 0 0 1 1 0 1 1 0]

[0 0 1 1 1 0 0 0 1 1 1 0 1]

[1 0 0 0 0 1 1 1 1 1 1 0 1]


[13, 3, 7] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1 1 1 0 1]

[0 1 0 0 1 1 1 0 1 0 1 1 0]

[0 0 1 1 1 0 0 0 1 1 1 0 1]

hull dim 2

[ <0, 1>, <7, 4>, <8, 3> ]



k=4

Construction III from a [11, 3, 5] code with h=0

46 %%%

[1 1 0 1 1 1 0 1 1 1 0 0 0]

[1 0 1 0 0 1 1 0 1 1 0 1 1]

[0 0 0 1 0 1 1 1 0 1 0 0 1]

[0 0 0 0 1 1 1 1 1 0 0 1 0]


[13, 4, 6] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 1 1 0 1 1 0 1 1]

[0 1 1 0 0 0 1 1 1 1 0 0 0]

[0 0 0 1 0 1 1 1 0 1 0 0 1]

[0 0 0 0 1 1 1 1 1 0 0 1 0]

hull dim 2

[ <0, 1>, <6, 12>, <8, 3> ]



k=5

Construction III from a [11, 4, 4] code with h=0

37 %%%

[1 1 0 1 1 1 1 0 1 1 0 0 0]

[1 0 1 0 0 0 1 1 0 0 1 0 0]

[1 0 0 1 0 0 1 0 1 0 0 1 0]

[1 0 0 0 1 0 1 0 1 0 1 0 1]

[0 0 0 0 0 1 1 1 0 0 0 1 1]


[13, 5, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1 0 1 0 1 0 1]

[0 1 0 0 1 0 1 1 0 1 0 0 1]

[0 0 1 0 1 0 0 1 1 0 0 0 1]

[0 0 0 1 1 0 0 0 0 0 1 1 1]

[0 0 0 0 0 1 1 1 0 0 0 1 1]

hull dim 2

[ <0, 1>, <5, 8>, <6, 10>, <7, 4>, <8, 3>, <9, 4>, <10, 2> ]



k=6

Construction III from a [11, 5, 4] code with h=0

1 %%%

[1 1 1 1 0 0 0 0 0 0 0 0 0]

[1 0 1 0 0 0 0 0 1 0 1 1 1]

[1 0 0 1 0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 0 0 1 1 0 0 1 1]

[0 0 0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 0 0 1 1 1 0 1 0 1]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 0 1 0 1 0 1 0]

[0 1 0 1 0 0 0 0 1 0 1 1 1]

[0 0 1 1 0 0 0 1 1 1 1 0 1]

[0 0 0 0 1 0 0 1 1 0 0 1 1]

[0 0 0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 0 0 1 1 1 0 1 0 1]

hull dim 2

[ <0, 1>, <4, 8>, <5, 10>, <6, 14>, <7, 14>, <8, 7>, <9, 6>, <10, 2>, <11, 2> ]



k=7

Construction I from a [11, 6, 3] code with h=1

d1: 3

[11, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 1 0]

[0 1 0 0 0 0 1 0 0 1 0]

[0 0 1 0 0 0 1 1 1 0 0]

[0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 1 1 1 0 0 0]

575 %%%

[1 0 1 1 0 0 0 1 1 1 0 1 1]

[1 1 1 0 0 0 0 0 0 1 0 1 0]

[1 1 0 1 0 0 0 0 1 0 0 1 0]

[0 0 0 0 1 0 0 0 1 1 1 0 0]

[1 1 0 0 0 1 0 0 0 1 1 0 0]

[1 1 0 0 0 0 1 0 1 0 1 0 0]

[1 1 0 0 0 0 0 1 1 1 0 0 0]


[13, 7, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 0 0 1 1]

[0 1 0 0 0 0 0 0 1 1 0 1 1]

[0 0 1 0 0 0 0 1 1 0 0 1 0]

[0 0 0 1 0 0 0 1 0 1 0 1 0]

[0 0 0 0 1 0 0 0 1 1 1 0 0]

[0 0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 0 1 1 0 0]

hull dim 2

[ <0, 1>, <4, 19>, <5, 20>, <6, 24>, <7, 24>, <8, 19>, <9, 20>, <12, 1> ]



k=8

Construction III from a [11, 7, 3] code with h=0

134 %%%

[1 1 1 1 1 0 1 0 0 0 1 1 0]

[0 0 1 0 0 0 0 0 0 1 0 1 1]

[0 0 0 1 0 0 0 0 0 1 1 0 1]

[1 0 0 0 1 0 0 0 0 0 1 1 0]

[0 0 0 0 0 1 0 0 0 1 1 1 0]

[1 0 0 0 0 0 1 0 0 1 1 1 1]

[1 0 0 0 0 0 0 1 0 0 1 0 1]

[1 0 0 0 0 0 0 0 1 0 0 1 1]


[13, 8, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 0 1 1]

[0 1 0 0 0 0 0 0 1 1 0 1 0]

[0 0 1 0 0 0 0 0 0 1 0 1 1]

[0 0 0 1 0 0 0 0 0 1 1 0 1]

[0 0 0 0 1 0 0 0 1 0 1 0 1]

[0 0 0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 0 0 1 0 1 1 1 0 0]

[0 0 0 0 0 0 0 1 1 0 1 1 0]

hull dim 2

[ <0, 1>, <4, 55>, <6, 96>, <8, 87>, <10, 16>, <12, 1> ]



k=9

Magma BKLC(GF(2), 13, 9)

> C:=BKLC(GF(2), 13, 9);

> C;

[13, 9, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 0 1 0 1 0 0]

[0 0 1 0 0 0 0 0 1 0 1 1 1]

[0 0 0 1 0 0 0 0 1 0 0 0 1]

[0 0 0 0 1 0 0 0 1 0 0 1 0]

[0 0 0 0 0 1 0 0 0 0 1 0 1]

[0 0 0 0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 0 1 1 1 1]

> Hull(C);

[13, 2, 8] Linear Code over GF(2)

Generator matrix:

[0 1 1 0 0 1 1 1 1 0 0 1 1]

[0 0 0 1 1 1 1 1 1 1 1 0 0]



k=10

[13, 10, 2] direct method

> C:=LinearCode

> [1,0,0,0,0,0,0,0,0,0,1,0,0],

> [0,1,0,0,0,0,0,0,0,0,0,1,0],

> [0,0,1,0,0,0,0,0,0,0,0,0,1],

> [0,0,0,1,0,0,0,0,0,0,0,0,1],

> [0,0,0,0,1,0,0,0,0,0,0,0,1],

> [0,0,0,0,0,1,0,0,0,0,0,0,1],

> [0,0,0,0,0,0,1,0,0,0,0,0,1],

> [0,0,0,0,0,0,0,1,0,0,0,0,1],

> [0,0,0,0,0,0,0,0,1,0,0,0,1],

> [0,0,0,0,0,0,0,0,0,1,0,0,1]>;

> C;

[13, 10, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 0 0 1]

[0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 0 0 0 1 0 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0 0 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 0 0 1]

[0 0 0 0 0 0 0 0 1 0 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 0 1]

> Hull(C);

[13, 2, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1 0]



k=11

[13, 11, 1] direct method

> C:=LinearCode

> [1,0,0,0,0,0,0,0,0,0,0,1,0],

> [0,1,0,0,0,0,0,0,0,0,0,0,1],

> [0,0,1,0,0,0,0,0,0,0,0,0,0],

> [0,0,0,1,0,0,0,0,0,0,0,0,0],

> [0,0,0,0,1,0,0,0,0,0,0,0,0],

> [0,0,0,0,0,1,0,0,0,0,0,0,0],

> [0,0,0,0,0,0,1,0,0,0,0,0,0],

> [0,0,0,0,0,0,0,1,0,0,0,0,0],

> [0,0,0,0,0,0,0,0,1,0,0,0,0],

> [0,0,0,0,0,0,0,0,0,1,0,0,0],

> [0,0,0,0,0,0,0,0,0,0,1,0,0]>;

> C;

[13, 11, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 0 0 0 0 1]

[0 0 1 0 0 0 0 0 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 0 0 0 0 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 0]

> Hull(C);

[13, 2, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 1 0]

[0 1 0 0 0 0 0 0 0 0 0 0 1]




%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

"h=3"


n=12 (h=3)


k=3

Exhaustive search or fact that 

there exists a self-orthogonal [12, 3, 6] code

d3: 6

[12, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 0 1 1 0 1]

[0 1 0 1 1 0 0 0 1 1 1 0]

[0 0 1 1 1 1 1 1 0 0 0 0]



k=4

d3: 4

[12, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 1 0 0 0]

[0 1 0 0 1 0 1 1 0 0 0 0]

[0 0 1 0 1 1 0 1 0 0 0 0]

[0 0 0 1 1 1 1 0 0 0 0 0]



k=5

Consruction III from a [10, 4, 4] code with h=2

2 %%% 

C1:=LinearCode

[1, 1, 1, 1, 0, 0, 0 ,0 ,0 ,0 ,0 ,0],

[1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0],

[1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0],

[0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0]>;


C2: [12, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 1 0 1 1 0 0]

[0 1 0 1 0 0 0 1 1 1 1 0]

[0 0 1 1 0 0 1 1 0 0 1 0]

[0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 3

[ <0, 1>, <4, 4>, <5, 14>, <6, 8>, <8, 3>, <9, 2> ]

C1 eq C2; true



k=6

Ground gen. matrix: 

[1 0 0 0 0 1 1 0 0 1]

[0 1 0 0 0 0 1 1 1 0]

[0 0 1 0 0 1 0 1 1 0]

[0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 1 1 1 1 0 0]

Construction III from a [10, 5, 3] code with h=2

2  %%% 

(1 1 0 0 0 0 0 0 0 0)

C:=LinearCode<GF(2), 12 |

[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1],

[1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0],

[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0],

[0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]>;

C;

[12, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 0 0 1 1 1 0]

[0 1 0 1 0 0 0 1 1 0 0 1]

[0 0 1 1 0 0 0 1 0 1 1 1]

[0 0 0 0 1 0 0 1 0 1 1 0]

[0 0 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 0 1 1 1 1 0 0]

hull dim 3

[ <0, 1>, <4, 10>, <5, 20>, <6, 8>, <7, 8>, <8, 13>, <9, 4> ]



k=7

Construction III from a [10, 6, 3] code with h=1

(Comment: A [12, 7, 4] Linear Code over GF(2) with h=3 is unique)

d1: 3

[10, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 0 1]

[0 1 0 0 0 0 1 0 0 1]

[0 0 1 0 0 0 1 1 1 0]

[0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 1 0 1 0 1 0]

[0 0 0 0 0 1 1 1 0 0]

342 %%%

[1 1 1 1 1 1 1 1 1 1 1 1]

[1 0 1 0 0 0 0 0 0 1 0 1]

[1 0 0 1 0 0 0 0 1 0 0 1]

[0 0 0 0 1 0 0 0 1 1 1 0]

[1 0 0 0 0 1 0 0 0 1 1 0]

[1 0 0 0 0 0 1 0 1 0 1 0]

[1 0 0 0 0 0 0 1 1 1 0 0]


[12, 7, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 1 0 0]

[0 1 0 0 0 0 0 0 1 1 0 1]

[0 0 1 0 0 0 0 1 1 0 0 1]

[0 0 0 1 0 0 0 1 0 1 0 1]

[0 0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 0 1 1 0 1 1 0]

hull dim 3

[ <0, 1>, <4, 39>, <6, 48>, <8, 39>, <12, 1> ]



k=8

Construction III from a [10, 7, 2] code with h=2

Ground gen. matrix: 

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 1 0 0]

[0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 1 1 0 0]


(1 1 0 0 0 0 0 0 0 0) % added vector

C:=LinearCode

[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]>;

> C;

[12, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 0 0 0 0 1 0]

[0 1 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0]

> Hull(C);

[12, 3, 4] Linear Code over GF(2)

Generator matrix:

[1 1 0 0 0 0 0 0 0 0 1 1]

[0 0 1 1 0 0 0 0 0 0 1 1]

[0 0 0 0 1 1 1 1 1 1 0 0]

> WeightDistribution(C);

[ <0, 1>, <2, 15>, <3, 4>, <4, 18>, <5, 60>, <6, 46>, <7, 60>, <8, 45>, <9, 4>,

<10, 3> ]



k=9

 Construciton II from a [10, 8, 2] code with h=2

Ground gen. matrix: 

[1 0 0 0 0 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0]

[0 0 1 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 1 1 0]

1 %%%

(0 0 0 0 0 0 0 0 0 0)  %% added vector

C:=LinearCode

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]>;


[12, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 1 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 0 0 1 0]

[0 0 0 0 0 0 1 0 0 0 1 0]

[0 0 0 0 0 0 0 1 0 0 1 0]

[0 0 0 0 0 0 0 0 1 0 1 0]

[0 0 0 0 0 0 0 0 0 1 1 0]

hull dim 3

[ <0, 1>, <2, 30>, <4, 127>, <6, 196>, <8, 127>, <10, 30>, <12, 1> ]



n=13 (h=3)




k=3

There exists a binary self-orthogonal [13, 3, 6] code, 

In fact such a code is unique by Bouyukliev, Bouyuklieva,  Gulliver.

"Classification of Optimal Binary Self-Orthogonal Codes"

Below is an example of a self-orthogonal [13, 3, 6] code.

Generator matrix:

[1 1 1 0 0 1 0 0 0 1 1 1 1]

[0 0 0 1 0 1 1 1 1 0 1 1 1]

[0 0 0 0 1 1 1 1 1 1 0 0 0]

> Hull(C);

[13, 3, 6] Linear Code over GF(2)

Generator matrix:

[1 1 1 0 0 1 0 0 0 1 1 1 1]

[0 0 0 1 0 1 1 1 1 0 1 1 1]

[0 0 0 0 1 1 1 1 1 1 0 0 0]

> WeightDistribution(C);

[ <0, 1>, <6, 3>, <8, 3>, <10, 1> ]


k=4

Construction I from a [11, 3, 5] code with h=2

11 %%% 

[1 0 1 1 1 1 1 0 0 0 0 0 0]

[0 0 1 0 0 0 1 1 0 1 1 0 1]

[0 0 0 1 0 1 0 0 0 1 1 1 0]

[1 1 0 0 1 1 1 1 1 0 0 0 0]


[13, 4, 5] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1 0 0 0 1 1]

[0 1 0 0 0 1 1 0 1 0 0 1 1]

[0 0 1 0 0 0 1 1 0 1 1 0 1]

[0 0 0 1 0 1 0 0 0 1 1 1 0]

hull dim 3

[ <0, 1>, <5, 3>, <6, 3>, <7, 4>, <8, 3>, <9, 1>, <10, 1> ]



k=5

Construction I froma [11, 4, 4] code with h=2

3 %%% 

[1 0 1 1 1 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 1 1 0 0 1 0 0]

[1 1 0 1 0 0 1 0 1 1 0 0 0]

[1 1 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]


[13, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 1 1 1 1 0 0]

[0 1 0 0 0 0 1 0 1 0 1 0 0]

[0 0 1 0 1 0 0 0 0 1 1 0 0]

[0 0 0 1 1 0 0 1 1 0 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]

hull dim 3

[ <0, 1>, <4, 10>, <6, 16>, <8, 5> ]


Construction IV from a [11, 4, 4] code with h=3

250  %%%

[1 0 1 1 0 0 0 0 0 0 1 1 0]

[0 0 1 0 0 0 0 1 1 1 1 0 0]

[1 1 0 1 0 0 1 0 1 1 0 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]


[13, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 0 1 1 1 0 1 0]

[0 1 0 0 0 0 1 1 0 0 0 1 0]

[0 0 1 0 0 0 0 1 1 1 1 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]

hull dim 3

[ <0, 1>, <4, 6>, <5, 5>, <6, 8>, <7, 7>, <8, 1>, <9, 3>, <11, 1> ]



k=6

Construction I from a [11, 5, 4] code with h=2

6 %%% 

[1 0 0 1 1 1 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 1 1 1 0 1]

[1 1 0 1 0 0 0 1 1 0 0 1 0]

[1 1 0 0 1 0 0 1 0 1 1 0 0]

[1 1 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1 1 1 1 0]

[0 1 0 0 0 0 0 1 0 1 0 1 0]

[0 0 1 0 0 0 0 0 1 1 1 0 1]

[0 0 0 1 0 1 0 0 0 0 1 1 0]

[0 0 0 0 1 1 0 0 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 3

[ <0, 1>, <4, 10>, <5, 6>, <6, 16>, <7, 14>, <8, 5>, <9, 10>, <11, 2> ]


Construction IV from a [11, 5, 4] code with h=3

485 %%% 

[1 0 0 0 1 1 0 0 0 0 0 1 1]

[1 1 1 0 0 0 0 1 1 0 0 1 0]

[0 0 0 1 0 0 0 0 1 1 1 0 0]

[1 1 0 0 1 0 0 1 0 1 1 0 0]

[1 1 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 0 1 1]

[0 1 0 0 0 1 0 1 0 1 1 1 1]

[0 0 1 0 0 1 0 0 0 0 1 1 0]

[0 0 0 1 0 0 0 0 1 1 1 0 0]

[0 0 0 0 1 1 0 0 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 3

[ <0, 1>, <4, 8>, <5, 8>, <6, 14>, <7, 16>, <8, 7>, <9, 8>, <10, 2> ]



k=7

Construction I from a [11, 6, 4] code with h=2

[13, 7, 4]

5 %%% 

[1 0 1 0 1 1 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 1 0 1 0 1]

[0 0 0 1 0 0 0 0 1 1 0 0 1]

[1 1 0 0 1 0 0 0 0 1 1 1 0]

[1 1 0 0 0 1 0 0 1 0 1 1 0]

[0 0 0 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 0 0 1 1 1 1 0 0]


[13, 7, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1 1 0 1 1]

[0 1 0 0 0 0 0 0 0 1 1 0 1]

[0 0 1 0 0 1 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 1 1 0 0 1]

[0 0 0 0 1 1 0 0 1 1 0 0 0]

[0 0 0 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 0 0 1 1 1 1 0 0]

hull dim 3

[ <0, 1>, <4, 27>, <6, 44>, <8, 51>, <10, 4>, <12, 1> ]



k=8

Construction I from a [11, 7, 3] code with h=2

[13, 8, 3]

33 %%% 

[1 0 1 0 0 0 0 1 1 0 0 0 0]

[1 1 1 0 0 0 0 0 0 1 1 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 0 0 1 0 0 1]

[0 0 0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 0 0 1 0 0 0 1 1 0]

[1 1 0 0 0 0 0 1 0 1 0 1 0]

[1 1 0 0 0 0 0 0 1 1 1 0 0]


[13, 8, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 1 1 1]

[0 1 0 0 0 0 0 0 0 1 0 1 1]

[0 0 1 0 0 0 0 0 1 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 0 0 1 0 0 1]

[0 0 0 0 0 1 0 0 0 1 1 1 0]

[0 0 0 0 0 0 1 0 0 0 1 1 0]

[0 0 0 0 0 0 0 1 1 0 1 1 0]

hull dim 3

[ <0, 1>, <3, 10>, <4, 24>, <5, 39>, <6, 54>, <7, 54>, <8, 39>, <9, 24>, <10, 

10>, <13, 1> ]



k=9

Construction IV from a [11, 8, 2] code with h=3

1  %%%

[1 0 1 1 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 1 1 1]

[1 1 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 1 0 0]


[13, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1 0 0]

[0 1 0 1 0 0 0 0 0 0 1 1 1]

[0 0 1 1 0 0 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 1 0 0]

hull dim 3

[ <0, 1>, <2, 15>, <3, 18>, <4, 22>, <5, 84>, <6, 106>, <7, 104>, <8, 105>, <9, 

44>, <10, 7>, <11, 6> ]



k=10

Construction I from a [11, 9, 1] code with h=2

1 %%% 

[1 0 1 1 1 1 1 1 1 1 1 0 0]

[1 1 1 0 0 0 0 0 0 0 0 0 1]

[1 1 0 1 0 0 0 0 0 0 0 1 0]

[1 1 0 0 1 0 0 0 0 0 0 0 0]

[1 1 0 0 0 1 0 0 0 0 0 0 0]

[1 1 0 0 0 0 1 0 0 0 0 0 0]

[1 1 0 0 0 0 0 1 0 0 0 0 0]

[1 1 0 0 0 0 0 0 1 0 0 0 0]

[1 1 0 0 0 0 0 0 0 1 0 0 0]

[1 1 0 0 0 0 0 0 0 0 1 0 0]


[13, 10, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 0 0 0 0 0 1 1]

[0 0 1 0 0 0 0 0 0 0 1 0 1]

[0 0 0 1 0 0 0 0 0 0 1 1 0]

[0 0 0 0 1 0 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 1 0 0]

hull dim 3

[ <0, 1>, <2, 21>, <3, 25>, <4, 66>, <5, 189>, <6, 210>, <7, 210>, <8, 189>, <9,

66>, <10, 25>, <11, 21>, <13, 1> ]



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

"h=4"


n= 12 (h=4)


k=4

Fact: There exist 10 self-orthogonal [12, 4, 4] codes by Bouyukliev, Bouyuklieva and  Gulliver.

One of them is as follows:

C:=LinearCode

[1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 1, 1, 0, 1, 0 ,0, 0, 0],

[0, 0, 1, 0, 1, 1 ,0 ,0, 1 ,0 ,0 ,0],

[0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1]>;

> C;

[12, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 1 0 0 0 0 0]

[0 1 0 0 1 1 0 1 0 0 0 0]

[0 0 1 0 1 1 0 0 1 0 0 0]

[0 0 0 1 0 1 1 1 1 1 1 1]

> Hull(C);

[12, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 1 1 0 0 0 0 0]

[0 1 0 0 1 1 0 1 0 0 0 0]

[0 0 1 0 1 1 0 0 1 0 0 0]

[0 0 0 1 0 1 1 1 1 1 1 1]

> WeightDistribution(C);

[ <0, 1>, <4, 6>, <8, 9> ]



k=5

Construction I from a [10, 4, 4] code with h=3

249 %%%

[1 0 1 0 0 0 0 0 0 0 1 1]

[0 0 1 0 0 0 0 1 1 1 1 0]

[0 0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0]


[12, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 1 0 1]

[0 0 1 0 0 0 0 1 1 1 1 0]

[0 0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 4

[ <0, 1>, <4, 8>, <5, 14>, <8, 7>, <9, 2> ]



k=6 

Construction I from a [10,5,4] code with h=3

5 %%% 

[1 0 1 0 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 1 1 0 0 1]

[0 0 0 1 0 0 0 0 1 1 1 0]

[1 1 0 0 1 0 0 1 0 1 1 0]

[1 1 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 0 1 1 1 1 0 0]


[12, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1 1 1 1]

[0 1 0 0 0 0 0 1 0 1 0 1]

[0 0 1 0 0 1 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 1 1 1 0]

[0 0 0 0 1 1 0 0 1 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0]

hull dim 4

[ <0, 1>, <4, 16>, <6, 30>, <8, 15>, <10, 2> ]



k=7

Construction I from a [10,6,2] code with h=3

1 %%% 

[1 0 1 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 1 0 0 0]


[12, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 1 0 0 0]

hull dim 4

[ <0, 1>, <2, 7>, <3, 4>, <4, 10>, <5, 28>, <6, 22>, <7, 28>, <8, 21>, <9, 4>, 

<10, 3> ]



k=8

Construction I from a [10,7,2] code with h=3

1 %%% 

[1 0 1 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0]


[12, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0]

hull dim 4

[ <0, 1>, <2, 18>, <4, 63>, <6, 92>, <8, 63>, <10, 18>, <12, 1> ]



n= 13 (h=4)


k=4

Fact: There are exactly six inequivalent binary self-orthogonal [13, 4, 4] codes by 

 Bouyukliev, Bouyuklieva and  Gulliver.

C:=LinearCode

[1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1]>;

> C;

[13, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 0 0 0 0 0]

[0 1 0 0 1 1 0 1 0 0 0 0 0]

[0 0 1 0 1 1 1 0 1 1 1 1 0]

[0 0 0 1 0 0 0 0 0 1 1 0 1]

> Hull(C);

[13, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 1 1 0 0 0 0 0]

[0 1 0 0 1 1 0 1 0 0 0 0 0]

[0 0 1 0 1 1 1 0 1 1 1 1 0]

[0 0 0 1 0 0 0 0 0 1 1 0 1]

> WeightDistribution(C);

[ <0, 1>, <4, 4>, <8, 11> ]



k=5

Construction I from a [11, 4, 4] code with h=3

249 %%% 

[1 0 1 0 0 0 0 0 0 0 1 1 0]

[0 0 1 0 0 0 0 1 1 1 1 0 0]

[0 0 0 1 0 0 1 0 1 1 0 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]


[13, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 1 0 1 0]

[0 0 1 0 0 0 0 1 1 1 1 0 0]

[0 0 0 1 0 0 1 0 1 1 0 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]

hull dim 4

[ <0, 1>, <4, 8>, <5, 14>, <8, 7>, <9, 2> ]


Ccnstruction IV from a [11, 4, 4 ] code with h=4

242 %%% 

[1 0 1 1 0 0 0 0 0 0 1 1 0]

[1 1 1 0 0 0 0 1 1 1 0 0 0]

[1 1 0 1 0 0 1 0 1 1 0 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]


[13, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 0 0 1 1 0]

[0 1 0 1 0 0 0 1 1 1 1 1 0]

[0 0 1 1 0 0 1 1 0 0 0 0 0]

[0 0 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]

hull dim 4

[ <0, 1>, <4, 6>, <5, 4>, <6, 8>, <7, 8>, <8, 1>, <9, 4> ]



k=6

Construction I from a [11, 5, 4] code with h=3

5 %%% Construction I from a [11, 5, 4] code with h=3

[1 0 1 0 1 1 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 1 1 0 0 1 0]

[0 0 0 1 0 0 0 0 1 1 1 0 0]

[1 1 0 0 1 0 0 1 0 1 1 0 0]

[1 1 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 0 1 1 1 1 0]

[0 1 0 0 0 0 0 1 0 1 0 1 0]

[0 0 1 0 0 1 0 0 0 0 1 1 0]

[0 0 0 1 0 0 0 0 1 1 1 0 0]

[0 0 0 0 1 1 0 0 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 4

[ <0, 1>, <4, 16>, <6, 30>, <8, 15>, <10, 2> ]


Construction III from a [11, 5, 4] code with h=3

1024 %%% 

[1 1 1 0 0 0 0 0 0 0 0 0 1]

[1 0 1 0 0 0 0 1 1 0 0 1 0]

[0 0 0 1 0 0 0 0 1 1 1 0 0]

[0 0 0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 1 1 0 0 1 0]

[0 1 0 0 0 0 0 1 1 0 0 1 1]

[0 0 0 1 0 0 0 0 1 1 1 0 0]

[0 0 0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 4

[ <0, 1>, <4, 15>, <5, 8>, <7, 16>, <8, 15>, <9, 8>, <12, 1> ]


Construction IV from a [11,5,4] code with h=4

5 %%% 

[1 0 1 1 1 1 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 1 1 1 0 1]

[1 1 0 1 0 0 0 0 1 1 1 1 0]

[1 1 0 0 1 0 0 1 0 1 1 0 0]

[1 1 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 1 0 1 1]

[0 1 0 0 0 1 0 1 0 1 1 1 1]

[0 0 1 0 0 1 0 1 0 1 0 0 1]

[0 0 0 1 0 1 0 1 0 1 0 1 0]

[0 0 0 0 1 1 0 0 1 1 0 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 4

[ <0, 1>, <4, 6>, <5, 14>, <6, 12>, <7, 14>, <8, 9>, <9, 2>, <10, 4>, <11, 2> ]



k=7 

Construction I from a [11, 6, 3] code with h=3

3 %%% 

[1 0 1 1 1 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 1 0 0 0 1]

[1 1 0 1 0 0 0 0 1 0 0 1 0]

[1 1 0 0 1 0 0 0 1 1 1 0 0]

[0 0 0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 1 0 0 0]


[13, 7, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 0 1 1 1 1 1]

[0 0 1 0 1 0 0 0 0 1 1 0 1]

[0 0 0 1 1 0 0 0 0 1 1 1 0]

[0 0 0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 1 0 0 0]

hull dim 4

[ <0, 1>, <3, 4>, <4, 10>, <5, 21>, <6, 28>, <7, 28>, <8, 21>, <9, 10>, <10, 4>,

<13, 1> ]


Construction IV from a [11, 6, 3] code with h=4

4 %%% 

[1 0 0 0 1 1 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 1 1 1 0 1]

[1 1 0 0 1 0 0 0 1 1 1 1 0]

[1 1 0 0 0 1 0 0 0 1 1 0 0]

[0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 1 0 0 0]


[13, 7, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 0 1 0]

[0 1 0 0 0 1 0 0 1 1 1 1 0]

[0 0 1 0 0 0 0 0 0 0 0 1 1]

[0 0 0 1 0 0 0 0 1 1 1 0 1]

[0 0 0 0 1 1 0 0 1 0 0 1 0]

[0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 0 0 0 0 0 0 1 1 1 0 0 0]

hull dim 4

[ <0, 1>, <3, 5>, <4, 10>, <5, 20>, <6, 28>, <7, 26>, <8, 21>, <9, 12>, <10, 4>,

<11, 1> ]



k=8

1 %%% Construction I from a [11, 7,2] code with h=3

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]


[13, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1 0]

[0 0 0 1 0 0 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]

hull dim 4

[ <0, 1>, <2, 18>, <4, 63>, <6, 92>, <8, 63>, <10, 18>, <12, 1> ]


Construction IV from a [11,7,2] code with h=4

1  %%% 

[1 0 1 1 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 1 1 1]

[1 1 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]


[13, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 1 0 0]

[0 1 0 1 0 0 0 0 0 0 1 1 1]

[0 0 1 1 0 0 0 0 0 0 1 0 0]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]

hull dim 4

[ <0, 1>, <2, 7>, <3, 6>, <4, 14>, <5, 44>, <6, 50>, <7, 56>, <8, 49>, <9, 20>, 

<10, 7>, <11, 2> ]



k=9

Construciton I from a [11, 8, 2] code with h=3

1 %%% 

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 1 1 1]

[0 0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 1 0 0]


[13, 9, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 1 1]

[0 0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 0 0 0 0 0 0 0 0 1 1 0 0]

hull dim 4

[ <0, 1>, <2, 11>, <3, 19>, <4, 38>, <5, 89>, <6, 98>, <7, 98>, <8, 89>, <9, 

38>, <10, 19>, <11, 11>, <13, 1> ]


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

"h=5"


n=12 (h=5)


k=5

Construction I from a [10,4,4] code with h=4

129 %%% 

[1 0 1 0 0 0 0 0 0 1 1 0]

[0 0 1 0 0 0 0 1 1 1 0 0]

[1 1 0 1 0 0 1 0 1 1 0 0]

[1 1 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0]


[12, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 0 1 0]

[0 1 0 0 1 0 1 0 1 1 1 0]

[0 0 1 0 0 0 0 1 1 1 0 0]

[0 0 0 1 1 0 0 1 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 5

[ <0, 1>, <4, 10>, <6, 16>, <8, 5> ]




k=6

Construction I from a [10,5,4] code with h=4

5 %%% 

[1 0 1 0 1 1 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 1 1 1 1]

[0 0 0 1 0 0 0 1 0 1 1 1]

[1 1 0 0 1 0 0 1 1 0 0 1]

[1 1 0 0 0 1 0 1 1 0 1 0]

[0 0 0 0 0 0 1 1 1 1 0 0]


[12, 6, 3] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 1 0 1 0 1 1 0]

[0 1 0 0 0 0 0 0 1 1 0 0]

[0 0 1 0 0 1 0 1 0 1 0 1]

[0 0 0 1 0 0 0 1 0 1 1 1]

[0 0 0 0 1 1 0 0 0 0 1 1]

[0 0 0 0 0 0 1 1 1 1 0 0]

hull dim 5

[ <0, 1>, <3, 2>, <4, 8>, <5, 14>, <6, 14>, <7, 14>, <8, 7>, <9, 2>, <10, 2> ]



k=7

Construction I from a [10,6,2] code with h=4

1 %%% 

[1 0 1 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 1 0 0 0]


[12, 7, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 1]

[0 0 0 1 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 1 1 0 0 0]

hull dim 5

[ <0, 1>, <2, 10>, <4, 31>, <6, 44>, <8, 31>, <10, 10>, <12, 1> ]



n=13 (h=5)


k=5

Fact: There are 11 [13,5,4] SO codes but only five of them do not have zero coordinates.

by Bouyukliev, Bouyuklieva and Gulliver.

We construct one of them from building-up as follows.

Construction I from a [11,4,4] code with h=4

129 %%% 

[1 0 1 0 0 0 0 0 0 1 1 0 0]

[0 0 1 0 0 0 0 1 1 1 0 0 0]

[1 1 0 1 0 0 1 0 1 1 0 0 0]

[1 1 0 0 1 0 1 1 0 1 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]


[13, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 1 1 0 1 0 0]

[0 1 0 0 1 0 1 0 1 1 1 0 0]

[0 0 1 0 0 0 0 1 1 1 0 0 0]

[0 0 0 1 1 0 0 1 1 0 0 0 0]

[0 0 0 0 0 1 1 1 1 0 0 0 0]

hull dim 5

[ <0, 1>, <4, 10>, <6, 16>, <8, 5> ]



k=6

Construction I from a [11, 5, 4] code with h=4

3 %%%

[1 0 1 1 1 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 1 1 1 0 1]

[1 1 0 1 0 0 0 0 1 1 1 1 0]

[1 1 0 0 1 0 0 1 0 1 1 0 0]

[0 0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]


[13, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 0 0 0 0 0 1 1]

[0 1 0 0 0 0 0 1 0 1 1 1 1]

[0 0 1 0 1 0 0 1 1 0 0 0 1]

[0 0 0 1 1 0 0 1 1 0 0 1 0]

[0 0 0 0 0 1 0 1 1 0 1 0 0]

[0 0 0 0 0 0 1 1 1 1 0 0 0]

hull dim 5

[ <0, 1>, <4, 6>, <5, 12>, <6, 12>, <7, 16>, <8, 9>, <9, 4>, <10, 4> ]



k=7

Start from a self-dual [12, 6, 4] code B_{12} from Pless' paper, here denoted by G_12

G_12 :=LinearCode

[1,1,1,1,0,0,0,0,0,0,0,0],

[0,0,1,1,1,1,0,0,0,0,0,0], 

[0,0,0,0,1,1,1,1,0,0,0,0], 

[0,0,0,0,0,0,1,1,1,1,0,0], 

[0,0,0,0,0,0,0,0,1,1,1,1], 

[0,1,0,1,0,1,0,1,0,1,0,1]>;

> G_12;

[12, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1 0 1 1 0]

[0 1 0 1 0 1 0 1 0 1 0 1]

[0 0 1 1 0 0 0 0 0 0 1 1]

[0 0 0 0 1 1 0 0 0 0 1 1]

[0 0 0 0 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 1 1 1 1]

> Hull(G_12);

[12, 6, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 0 1 0 1 1 0]

[0 1 0 1 0 1 0 1 0 1 0 1]

[0 0 1 1 0 0 0 0 0 0 1 1]

[0 0 0 0 1 1 0 0 0 0 1 1]

[0 0 0 0 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 1 1 1 1]

> WeightDistribution(G_12);

[ <0, 1>, <4, 15>, <6, 32>, <8, 15>, <12, 1> ]

%% Augment [1,0,0,0,0,0,0,0,1,0,1,0,1] to G_12 to get G_13

G_13 :=LinearCode

[1,0,0,0,0,0,0,0,1,0,1,0,1], 

[0,1,1,1,1,0,0,0,0,0,0,0,0], 

[0,0,0,1,1,1,1,0,0,0,0,0,0], 

[0,0,0,0,0,1,1,1,1,0,0,0,0], 

[0,0,0,0,0,0,0,1,1,1,1,0,0], 

[0,0,0,0,0,0,0,0,0,1,1,1,1], 

[0,0,1,0,1,0,1,0,1,0,1,0,1]>;

> G_13;

[13, 7, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 1 0 1]

[0 1 0 0 1 0 1 0 1 0 1 1 0]

[0 0 1 0 1 0 1 0 1 0 1 0 1]

[0 0 0 1 1 0 0 0 0 0 0 1 1]

[0 0 0 0 0 1 1 0 0 0 0 1 1]

[0 0 0 0 0 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 0 1 1 1 1]

> Hull(G_13);

[13, 5, 4] Linear Code over GF(2)

Generator matrix:

[0 1 0 0 1 0 1 0 1 0 1 1 0]

[0 0 1 0 1 1 0 0 1 0 1 1 0]

[0 0 0 1 1 1 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 0 1 1 1 1]

> WeightDistribution(G_13);

[ <0, 1>, <4, 23>, <6, 56>, <8, 39>, <10, 8>, <12, 1> ]



k=8

Construction I from a [11, 7, 2] code with h=4

1  %%%

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[1 1 1 0 0 0 0 0 0 0 1 1 1]

[0 0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]


[13, 8, 2] Linear Code over GF(2)

Generator matrix:

[1 0 1 0 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 1 1]

[0 0 0 1 0 0 0 0 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 0 1]

[0 0 0 0 0 1 0 0 0 0 1 1 0]

[0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 1 0 0 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0]

hull dim 5

[ <0, 1>, <2, 7>, <3, 7>, <4, 14>, <5, 49>, <6, 50>, <7, 50>, <8, 49>, <9, 14>, 

<10, 7>, <11, 7>, <13, 1> ]




// Construction III may give same rank as the bottom rank l, so that 

// building up can derive hull dimension l, l+1, l+2. For example,

1

[1 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 1 0 1 1 0 0 0 0]

[0 0 0 1 0 1 1 0 1 0 0 0 0]

[0 0 0 0 1 1 1 1 0 0 0 0 0]


[13, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 1 0 0 0 0 0 0 0 0 0 0 0]

[0 0 1 0 0 1 0 1 1 0 0 0 0]

[0 0 0 1 0 1 1 0 1 0 0 0 0]

[0 0 0 0 1 1 1 1 0 0 0 0 0]

hull dim 4

[ <0, 1>, <2, 1>, <4, 7>, <6, 7> ]


2

[1 1 1 1 0 0 0 0 0 0 0 0 0]

[1 0 1 0 0 1 0 1 1 0 0 0 0]

[1 0 0 1 0 1 1 0 1 0 0 0 0]

[0 0 0 0 1 1 1 1 0 0 0 0 0]


[13, 4, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 1 1 0 1 0 0 0 0]

[0 1 0 1 0 1 0 1 1 0 0 0 0]

[0 0 1 1 0 0 1 1 0 0 0 0 0]

[0 0 0 0 1 1 1 1 0 0 0 0 0]

hull dim 3

[ <0, 1>, <4, 6>, <5, 8>, <8, 1> ]